
Dao T.T et al. VOLUME: 23 | NUMBER: 1 | 2025 | MARCH

Research Article

THE IMPACTS OF ELECTRIC CHARGING
STATIONS ON DISTRIBUTION POWER GRIDS

UNDER DIFFERENT SIMULATIONS USING
JELLYFISH SWARM ALGORITHM

Dao Trong TRAN 1,∗ , Minh Phuc DUONG 2

1Division of MERLIN, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University,
Ho Chi Minh city, Vietnam

2Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City, Vietnam

trantrongdao@tdtu.edu.vn, duongphucminh@tdtu.edu.vn

∗Corresponding author: Dao Trong Tran; trantrongdao@tdtu.edu.vn

DOI: 10.15598/aeee.v23i1.250101

Article history: Received Jan 1, 2025; Revised Feb 14, 2025; Accepted Mar 06, 2025; Published Mar 31, 2025.
This is an open access article under the BY-CC license.

Abstract. This research presents different implemen-
tations for placing electric charging stations (ECSs) in
distribution power networks (DPNs) to achieve the best
total active power loss (TAPL). Solar generators (SGs)
are also used to alleviate the adverse effects resulting
from the presence of ECSs in the networks in terms of
power loss and voltage profile. Artificial hummingbird
algorithm (AHA), Jellyfish swarm algorithms (JS), and
Northern goshawk optimization (NGO) are executed to
determine the best placement of ECSs and SGs in an
IEEE 33-node network for reaching a minimum loss
and satisfying all the related constraints. There are
four cases conducted in the whole research. In the first
case, JS outperforms both AHA and NGO by providing
the highest stability throughout all the trial runs and
fastest convergence speed to the optimal solution in the
best runs. Besides, the quantitative comparison also
consolidates the robustness and reliability of JS com-
pared to others. Based on the surprising performance,
JS is continuously reapplied to solve another three cases
of the considered problem. Through those three cases
with the application of JS, the TAPL values of four sce-
narios with different numbers of ECSs are evaluated.
Specifically, the results achieved by JS indicate that the
higher number of ECSs leads to a higher value of TAPL
and a higher voltage drop. On the other hand, the si-
multaneous placement of SGs and ECSs can result in
smaller fluctuations of the voltage profile and smaller
TAPL. Thus, the optimization placement of ECSs and

SGs is crucial to DPNs for economic and technical pur-
poses.
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1. Introduction

Nowadays, global warming is one of the most concern-
ing problems due to its negative effects, which can ap-
parently be experienced all around the globe [1]. The
main contribution to these negative effects is the signif-
icant increase in CO2 concentration produced by differ-
ent modern activities, including diesel-based vehicles
[2]. Moreover, due to the rapid growth of the world
economy, the fleet of gasoline and diesel cars in large
cities and countries has impressively grown, damaging
the environment there [3]. In this circumstance, the
shift to electric vehicles is acknowledged to be the af-
fordable solution for reducing CO2 emissions and im-
proving air quality in such hustling cities and places
[4, 5]. The growth of the use of electric vehicles leads
to a demand for electric charging stations (ECSs) con-
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nected to the distribution power network (DPN) [6].
However, the placement of ECS in the DPNs also has
some negative effects, such as power loss enlargement
or voltage deregulation. Renewable power sources are
then proposed to reduce voltage drop and power loss
[7].

By thoroughly understanding the advantages and
disadvantages of placing ECS in the DPN, many re-
searchers have conducted their research to enhance the
advantages of placing ECS while simultaneously try-
ing to mitigate the negative impacts. Firstly, a gen-
eral look at the impacts caused by having the ECSs
in DPN is given in [6]. Next, the presence of ECSs in
the DPN is evaluated regarding power demand, har-
monics, voltage sag, and transformer power loss [8].
Then, [9] focuses on identifying and analysing the im-
pact of ECSs on the reliability of the IEEE-33 bus test
system. After that, the impact of ECSs on the DPN
planning problems is assessed and evaluated in [10].
After that, the effects of having ECSs in a real DPN
in a Latin American intermediate city are investigated
[11]. Furthermore, the influences of ECSs on a residen-
tial distribution network in Bangladesh are also stud-
ied in [12]. Since all the problems and negative impacts
caused by ECSs in DPN have been fully identified, a
lot of papers have been proposed to partly mitigate
all these downsides of ECSs, considering different as-
pects and orientations. For example, the authors in
[13, 14] offered a method to solve the problem of in-
creasing peak hours caused by the charging process of
electric cars, which did not happen in the past when
gasoline cars were in high demand. Moreover, the au-
thors also argue that the increase in peak hours leads
to overload status, which badly affects all electrical de-
vices in the network, such as transformers and distribu-
tion lines. Besides the negative effects on the electrical
devices, the fluctuation of voltage and current are fo-
cused on in [15, 16]. In [17], an optimization model is
suggested to minimize the voltage stability index and
evaluate the charging demand and the economy aspect
while building ECSs in the IEEE-33 node. In [18], a
multi-objective function has been formulated to mini-
mize voltage deviation and power loss simultaneously.
The authors in [19] addressed the inadequacy of build-
ing an uncontrolled number of ECSs on the grid, and
then a cost model of ECS operation was built for dif-
ferent circumstances. After that, an optimization tool
is applied to determine the optimal location of ECSs.
In [20], the authors focused on shortening the capital
of ECS while considering the voltage boundaries and
reactive power loss of the whole system.

In practice, renewable energy generators (REGs),
mostly solar generators (SGs) and capacitor banks
(CBs), have been deployed independently or com-
pounded to alleviate the negative impacts caused by
ECS in the grid and also reduce the pressure on the

transmission network. For example, CBs are combined
with distributed generators (DGs) in [21] to optimize
the reconfiguration of DPN based on the employment
of a multi-objective function to reach different indices
such as power loss, integrating level, and voltage sta-
bility in different scenarios. Next, the authors in [22]
focused on maximizing the power supplied by solar gen-
erators by combining both the placement of ECSs and
renewable energy generators in DPN to reduce the re-
liance on transmission power networks. Besides, CBs
are also integrated into the IEEE-33 bus and 34-bus
DPN together with ECS to lessen the power loss and
maintain the reliability of DPN [23]. On top of that,
the authors in [24] suggested that using the CB is one
of the most efficient methods to handle the negative ef-
fects caused by the improper position of placing ECSs
in the DPN. The author also added that geographi-
cal convenience is the top priority while establishing
an ECS, not power flow optimization for DPN; there-
fore, using auxiliary engineering solutions is highly rec-
ommended to maintain the designed capability of the
DPN. However, the combination of CBs, SGs, and DGs
are simultaneously integrated with the DPN along the
ECSs to maximize the efficiency, as conducted in [25].
Besides, the related modelling, simulation, and control
methods in terms of operations and charging meth-
ods of EVs under different conditions, both in theory
and practice, are highly essential to providing refer-
ences and data analysis in the developing and test-
ing phases [26, 27]. Additionally, the author in [28]
presents the approach to solving the of transferring
power the wireless charging technology and by enhanc-
ing the efficiency of the battery management system
(BMS) on EVs [29]. On top of that, the battery is a
crucial element in an EV, among others. Therefore,
manufacturers and researchers also need an overview
of the market for electric vehicle batteries [30].

By deeply understanding the positive effects brought
by placing ECS combined with REGs to the distribu-
tion girds, this research applied three meta-heuristic
algorithms including Artificial hummingbird algorithm
(AHA) [31], jellyfish algorithm (JS) [32], and North-
ern goshawk optimization (NGO) [33] to optimize the
placement of ECS in the given DPN to achieve the
minimum value of the main objective function which is
minimizing the total active power loss (TAPL). The
three algorithms are proposed based on the simula-
tion of living behaviours of different species in na-
ture such as, hummingbird, jellyfish, and northern
goshawk. Besides, those algorithms are also evalu-
ated with various tests both in theorical and real-
world problems and they have proven their capabili-
ties while compared to other published previously. For
AHA, specifically, when tested on the Multiple Disc
Clutch Brake design problem, the algorithm demon-
strated its superiority over several others, including
Artificial Bee Colony (ABC), Teaching-Learning-Based
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Optimization (TLBO), and Passing Vehicle Search
(PVS). JS, on the other hand, exhibited high perfor-
mance compared to various algorithms, such as Parti-
cle Swarm Optimization (PSO), its improved version
(IPSO), and Enhanced Colliding Bodies Optimization
(ECBO), when addressing the 582-bar tower optimal
design problem. Lastly, NGO was also tested on dif-
ferent practical optimization problems, such as Pres-
sure Vessel Design, Welded Beam Design, and Speed
Reducer Design, during its development phase. The
results obtained across these problems indicated that
NGO outperforms the Whale Optimization Algorithm
(WOA), Marine Predators Algorithm (MPA), Tunicate
Swarm Algorithm (TSA), and others.

Compared to previous studies, the study has main
novelties as follows:

• Apply three meta-heuristic algorithms, including
AHA, JS, and NGO, to solve the given problem
of optimizing the placement of ECSs and REGs in
the given DPN.

• Propose different cases of optimizing REGs and
ECSs: 1) The placement of ECSs is optimized in
the first step, and then the placement of REGs is
optimized in the second step, and 2) The place-
ment of EGSs is optimized in the first step and
then the placement of ECSs is optimized in the
second step.

• Different penetration levels of ECSs are tested,
and then the corresponding capacity of REGs is
optimized.

After running the three algorithms for simulation
cases in an IEEE 33-node system, the contributions
of the study can be summarized as follows:

• JS is the most suitable algorithm among the three
applied algorithms for the problem of optimally
installing ECSs and REGs in distribution power
grids.

• The use of high penetration levels of ECSs in dis-
tribution power grids leads to a high voltage drop
and a high power loss. However, the use of REGs
can improve the voltage and total power loss in
the distribution system.

• The optimal placement of REGs in the first stage
and the optimal placement of ECS in the next
stage have a better voltage profile and a smaller
power loss.

In addition to the Introduction, other sections of the
research are structured as follows: Section 2 presents
the mathematical model of the given problem in terms

of the main objective function and the related con-
straints; Section 3 briefly introduces the applied algo-
rithms; Section 4 provides the discussion on the results
achieved by the applied algorithms on different cases;
finally, Section 5 reveals the important conclusions of
the whole research.

2. Problem formula

2.1. The main objective function

This study minimizes the value of active power loss
in the distributed power network (DPN). The mathe-
matical expression of the objection function is given as
follows [14]:

Minimize TAPL =

NDL∑
n=1

Rn × I2n (1)

where TAPL is the total active power loss in the con-
sidered DPN; n is the distribution line n; NDL is the
number of distribution lines of the considered DPN;
Rn and In are respectively the resistance and current
values of the distribution line n.

2.2. The related constraints

1) The power balance constraints

These constraints mean that the total active and re-
active power supplied by all the generating sources in
the grid must equal the active and reactive power de-
manded by the end user and power loss. The math-
ematical expression of the constraints is given below
[34]:

PSL +

NSGs∑
m=1

PSG,m =PLD +

NCS1∑
i=1

PL1,i +

NCS2∑
j=1

PL2,j

+

NCS3∑
k=1

PL3,k + Ploss

(2)
and

QSL +

NCBs∑
c=1

QCB,c = QLD +Qloss (3)

In Equations (2) and (3), PSL and QSL are active
and reactive power received from the transmission net-
work at slack node; PL1,i is the power supplied by
the ith ECS level 1 with i = 1. . . NCS1 and NCS1 is
the number of ECS level 1 in grid; PL2,j is the power
supplied by the jth ECS level 2 with j = 1. . . NCS2

and NCS2 is the number of ECS level 2 in grid; PL3,k

is the power supplied by the kth ECS level 3 with
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k = 1. . . NCS3 and NCS3 is the number of ECS level
3 in grid; PSG,m is the power supplied by the SGs m,
with m = 1. . . NSGs and NSGs is the number of the
SGs in grid; QCB,c is the reactive power supplied by
cth CB with c = 1. . . NCBs and NCBs is the number of
capacitor banks; PLD and QLD are active and reactive
power demanded by load; finally, PLoss and QLoss are
respectively active and reactive power loss caused by
the transmission process.

2) The operating constraints of capacitor
banks (CBs) and solar generators (SGs)

Similar to other electrical devices, both CBs and SGs
will work safely and effectively if their outputs are var-
ied in the allowed ranges as described in [35]:

P low
SG,m ≤ PSG,m ≤ Phigh

SG,m (4)

Qlow
CB,c ≤ QCB,c ≤ Qhigh

CB,c (5)

where P low
SG,m and Phigh

SG,m are the lowest and highest
value of active power generated by the mth SG; Qlow

CB,c

and Qhigh
CB,c are the lowest and highest values of reactive

power supplied by the cth CB.

3) The constraints of voltage and current
amplitude

The presence of CBs and SGs in the considered DPN
leads to a variation of both voltage and current ampli-
tude in the whole network. However, these values can
only change within particular boundaries to ensure the
stability and reliability of the network [36].

U low
nd ≤ Und ≤ Uhigh

nd
(6)

In ≤ Ihighn (7)

where U low
nd and Uhigh

nd are the lowest and highest value
of voltage at the ndth node; Ihighnd is the highest value of
current allowed to sent through the distribution line n;
Und is the voltage value at the ndth node with ndth =
1. . . Nnd and Nnd is the number of node in grid.

4) The constraints of electrical charging
stations (ECSs)

This constraint means that only all the ECSs can be
placed from node two onward on the system. More-
over, each node is allowed to place only one ECS. The
formulation of the constraint is given as follows [35]:

2 ≤ PoECS−L1, PoECS−L2, PoECS−L3 ≤ Nnd (8)

PoECS−L1 ̸= PoECS−L2 ̸= PoECS−L2 (9)

where PoECS−L1, PoECS−L2, PoECS−L3 are the posi-
tion of the ECS level 1, 2, and 3 in the grid.

5) Constraint of position for placing CBs
and SGs

Similar to EVSs, both CBs and SGs can be placed from
node two onwards in the network, as described below
[37]:

2 ≤ PoSG,m, PoCB,c ≤ Nnd (10)

where PoSG,m and PoCB,c are the position of the SGs
and CBs in the grid.

6) The constraints of SGs’ power factor

SGs are supposed to have power factors in the range of
0.85 to 1.0. so, the optimal power factor is constrained
within the range below:

PF low
SG,m ≤ PFSG,m ≤ PFhigh

SG,m (11)

where P low
SG,m and PFhigh

SG,m are the lower and upper lim-
its of the mth SG’s power factor.

3. Applied methods

This section will briefly introduce the update mecha-
nisms of the three applied algorithms for new solutions.
Note that the update mechanism is critical in differenti-
ating a particular meta-heuristic algorithm from many
others.

3.1. The Artificial hummingbird
algorithm (AHA)

The update method for new solutions of AHA is in-
spired by the variation on position of the hummingbird
in its foraging process in nature. The update process
is subsequently executed using three phases and their
specific expressions will be given as follows [31]:

Xnew,P1
n = Xsl + ε1 ×NV × (Xn −Xsl) (12)

Xnew,P2
n = Xn + ε2 ×NV ×Xn (13)

Xnew,P3
n = HBn +Rnd× (HBn − LBn) (14)

In the three equations above, Xnew,P1
n , Xnew,P2

n ,
and Xnew,P3

n are respectively the new position of the
hummingbird n at each phase, respectively with n =
1, . . . NPs and NPs is initial population size; Xsl is the
random selected position in the search space; ε1 and ε2
are the amplying factors; NV is the navigating factor;
HBn and LBn the highest and lowest boundaries of
the search space; Rnd is the random number between
0 and 1.
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3.2. The Jellyfish algorithm (JS)

As mentioned earlier, the development of JS is based on
the living practices of jellyfish in nature, particularly
their movement practices in the ocean. These move-
ments are also the main idea of the update method
for producing new solutions in the search process for
the optimal solution. The particular expression of the
update method of JS is given below [32]:

Xnew
n =

{
Xn +mt×Rnd× (HBn − LBn)

Xn + ST

with n = 1 . . . NPS

(15)
With

ST = Rnd×DT (16)

DT =

{
XR −Xn if FR > FXn

Xn −XR if FXn < FR

(17)

In Equations (15) – (17), Xnew
n and Xn are the new

updated position and the considered position belonged
to the jellyfish n of the population; mt is the moving
transition factor and according to the authors mt is
set by 0.1 to optimize the searching ability of the al-
gorithm; ST is the length of the jump step; DT is the
direction term; XR and FR are respectively the ran-
dom jellyfish selected from the initial population and
its fitness value.

3.3. The Northern goshawk
optimization (NGO)

Similar to AHA and JS, the update method for new
NGO solutions is also developed by simulating the liv-
ing practices of the northern goshawk, particularly the
hunting behavior, which is separated into two phases.
The mathematical expressions of each phase will be
given as follows [33]:

Xnew,P1
n

=

{
Xn +AF1(XR −AF2 ×Xn), FXR

< Xn

Xn +AF1(Xn −XR), FXR
≥ Xn

(18)

where Xnew,P1
n is the new position of the the northern

n of the population with n = 1, 2, . . . NPs and NPs

is the initial population size; Xn the current position
of the northern n; AF1 and AF2 are, respectively, the
amplifying factors are their values is random generated
between 0 and 1; XR is the random selected position
in the search space.

After the update process for new solutions in the
first phase is completed, the update for new solution
in the second phase is executed using the expression

below [33]

Xnew,P1
n = Xn + SPHA × (2×AF1 − 1)×Xn (19)

With

SPHA = 0.02

(
1− IT

ITmax

)
(20)

In Equations (19) and (20), Xnew,P1
n is the new posi-

tion of the northern n in phase 2; SPHA is the acreage
of the posible hunting area; IT and ITmax are, respec-
tively, the current index of iteration and the maximum
index of iteration.

4. Results

AHA, JS and NGO are implemented for the simula-
tion and evaluation. Each algorithm is run fifty trials
to collect the optimal solutions, the best and worst
solutions with the smallest and highest power losses,
the best run convergence characteristic and the mean
convergence characteristic of all runs. The program of
solving study case is coded in MATLAB on a computer
with 2.6 GHz of CPU and 8GB of RAM. For each case,
the population and iteration number are set to 30 and
100. The selection of the population and the maxi-
mum iteration number must be selected suitably for
getting the most optimal solution and the simulation
time is not long [38]. Besides, the three applied algo-
rithms are executed for 50 trial runs for the best solu-
tion before all the comparisons take place. This section
employs the original IEEE 33-node distribution power
grid to investigate the installation of SGs and ECSs.
The single-line diagram of the grid is plotted in Figure
1 [25]. Input data of the grid consisting of load demand
at each node, resistance, and reactance of each line are
taken from [25]. The total load demand is 213.41 kW
[25]. In the study, we simulate three scenarios and four
study cases for each scenario, including:

• Case 1: Optimize the placement of three SGs in
the original grid.

• Case 2: Use results from Case 1 and continue op-
timize the placement of ECSs.

• Case 3: Optimize the placement of ESCs in the
original grid.

• Case 4: Use results from Case 3 and continue to
optimize thee SGs.

In Scenario 1, 1 Level-1 EVS, 1 Level-2 EVS and 1
Level-3 EVS are considered. In the scenarios 2 and 3,
each EVS type has two and three stations, respectively.
It is assumed that the Level-1 EVS can charge 1000
cars simulataneously and the station needs the supply
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Fig. 1: The configuration of the IEEE 33-node system.

of 206.kW. Similarly, the car number and the capacity
of Level-2 and Level-3 stations are 1000 cars and 435
kW, and 10 cars and 1,087 kW, respectively. The rated
power of each charger is 1.9 kW in the Level-1 station,
4.0 kW in the Level-2 station and 100 kW in the Level-
3 station [16]. The efficiency of each charger is selected
to be 0.92.

4.1. Optimal placement of three SGs

The three curves in Figure 2a present the power loss
of the trial runs and the summary of all trial runs, in-
cluding the best, mean and worse loss, and standard
deviation are given in Figure 2b. JS’s power losses in
red curve are less than those of NGO in black curve
and AHA in green curve. The shortest bars of JS,
NGO and AHA have the same loss of 14.52; however,
JS reaches shorter maximum and mean loss bars than
others. Furthermore, JS gets the smallest standard de-
viation (STD). In addition, the best run and mean run
of fifty trials are given in Figure 3a and 3b. In Figure
3a, JS is faster than AHA and NGO from the fourtyth
iteration to the eightyth iteration, then the three al-
gorithms reach the same loss at the final iteration. In
Figure 3b, the mean loss of NGO is always greater than
that of AHA and JS. AHA can reach better mean loss
values than JS for the first fourty iteration but then JS
reaches better mean values than AHA for other itera-
tions. Clearly, JS is faster and more stable than AHA
and NGO.

In summary, the three algorithms could reach the
same best solution but the mean solution and worst
solutions from JS are less. JS reach faster and more
stable convergence. Thus, JS is the most suitable algo-
rithm for Case 1, and JS is selected for running other
remaining cases.

Table 1 presents the optimal solutions achieved by
JS in Case 1.

(a) Fifty optimal solutions

(b) Summary of results from fifty optimal solutions

Fig. 2: Results obtained by executed algorithms for Case 1.

4.2. Results obtained for all study
cases

The results obtained for four cases of three scenarios
by running JS are shown in Figure 4. Case 1 is the
same for all scenarios, but Case 2, Case 3 and Case
4 are different in all scenarios. In general, the power
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(a) The best run

(b) The mean of all runs

Fig. 3: Comparison of convergence characteristics obtained by
algorithms for Case 1.

loss is increased from Scenario 1 to Scenario 3. The
losses are 17.858, 35.040, and 74.701 kW for Case 2 in
Scenarios 1, 2 and 3, respectively. Similarly, the losses
are 224.496, 270.355, and 357.126 kW for Case 3, and
20.832, 42.609, and 74.295 kW for Case 4, respectively.
The results are obvious because the number of ECSs is
increased from 3 to 6 and 9 in Scenarios 1, 2 and 3.

Among four study cases, Case 1 reach the smallest
power loss because no ECSs but three SGs are placed
in the grid. Case 3 suffers from the highest loss because
load demand is greater due to the adding more ECSs
and no SGs are placed. Case 2 and Case 4 had both

Tab. 1: The optimal solution achieved by the JS in Case 1.

Variables Case 1
PoSG,1;PSG,1 (kW) 30; 1199.92
PoSG,2;PSG,2 (kW) 24; 1032.44
PoSG,3;PSG,3 (kW) 13; 753.55

PFSG,1 0.85
PFSG,2 0.87
PFSG,3 0.86

Power loss (kW) 14.51576

Fig. 4: Comparison of power loss for scenarios of Cases.

ECSs and SGs in the grid. However, Case 2 placed SGs
first and ECS then but Case 4 placed ECSs first and
SGs then. In Scenario 1, the loss is 17.858 kW for Case
2, and 20.832 kW for Case 4. In Scenario 2, the loss is
35.040 kW for Case 2, and 42.609 kW for Case 4. In
Scenario 3, the loss is 74.701 kW for Case 2, and 74.295
kW for Case 4. Case 4 suffers a higher loss than Case
2 by about 3 kW in Scenario 1, 5.6 kW in Scenario 2.
But Case 2 suffers a little higher loss than Case 4 by
about 0.5 kW in Scenario 3.

The voltage profile of three scenarios of placing ECSs
to the grid in Case 2 is presented in Figure 5. The figure
clearly shows that the increase in the number of ECSs
placed on the grid will lead to a higher voltage drop.
Mainly, Scenario 3 resulted in the highest voltage drop,
while Scenario 1 showed the smallest one among the
three considered scenarios. Note that the voltage drop,
in this case, is determined by optimizing the placement
of SGs first at Case 1, and then ECSs are subsequently
optimized.

Figure 6 shows the voltage profile in Case 3 with
different scenarios of placing ECSs in the considered
DPN. The degree of voltage drop at buses are com-
pletely huge compared to Case 2. Additionally, the
placement of ECSs in Scenario 3 has violated the volt-
age limit described by the two red lines in the figure.
Note that the placement of ECSs in three scenarios in
this case is not supported by SG as seen in Case 2.
Therefore, the presence of more ECSs will increase the
load demand compared to the original configuration of
the gird and also lead to another extensively voltage
drop.

Case 4 is conducted with the additional placement of
SGs to improve the voltage profile at all buses in Case
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Fig. 5: Voltage profile of systems for different scenarios of Case
2 obtained by JS.

Fig. 6: Voltage profile of systems for different scenarios of Case
3 obtained by JS.

3, and the results are displayed in Figure 7. Moreover,
of course, the placement of SGs in the grid is also opti-
mized, besides the optimal position of ECSs executed
in Case 3. The presence of SGs, in this case, has sub-
stantially improved voltage drop at all buses compared
to Case 3. However, compared to Case 2, where the
placement of SGs is first optimized, the fluctuation of
voltage value in Case 4 is still more significant, espe-
cially at buses 19 to 25.

Tables 2, 3, and 4 present the optimal solutions
achieved by JS in the three scenarios of the last three
cases.

5. Conclusions

This paper applied three meta-heuristic algorithms to
optimize the placement of SGs and ECSs in different
cases for TAPL evaluation. The three algorithms are

Tab. 2: The optimal results obtained by JS in Scenario 1 of the
last three cases.

Variable Case 2 Case 3 Case 4
PoECS−L1 30 20 20
PoECS−L2 19 19 19
PoECS−L3 2 2 2
PoSG,1; 30; 1199.92 - 24; 1110.379

PSG,1 (kW)
PoSG,2; 24; 1032.44 - 30; 1214.597

PSG,2 (kW)
PoSG,3; 13; 753.55 - 13; 764.416

PSG,3 (kW)
PFSG,1 0.85 - 0.887
PFSG,2 0.87 - 0.85
PFSG,3 0.86 - 0.868
Power 17.858 224.496 20.832

loss (kW)

Tab. 3: The optimal results obtained by JS in Scenario 2 of the
last three cases.

Variable Case 2 Case 3 Case 4
PoECS−L1 20; 30 22; 3 22; 3
PoECS−L2 23; 3 20; 21 20; 21
PoECS−L3 19; 2 19; 2 19; 2
PoSG,1; 30; 1199.92 - 12; 933.958

PSG,1 (kW)
PoSG,2; 24; 1032.44 - 30; 1295.216

PSG,2 (kW)
PoSG,3; 13; 753.55 - 21; 1450.431

PSG,3 (kW)
PFSG,1 0.85 - 0.873
PFSG,2 0.8722 - 0.85
PFSG,3 0.8635 - 0.95
Power 35.04 270.355 42.609

loss (kW)

Tab. 4: The optimal results obtained by JS in Scenario 3 of the
last three cases.

Variable Case 2 Case 3 Case 4
PoECS−L1 21; 24; 30 4; 23; 24 4; 23; 24
PoECS−L2 4; 20; 23 20; 21; 22 20; 21; 22
PoECS−L3 2; 3; 19 2; 3; 19 2; 3; 19
PoSG,1; 30; 1199.92 - 30; 1279.705

PSG,1 (kW)
PoSG,2; 24; 1032.44 - 24; 1914.165

PSG,2 (kW)
PoSG,3; 13; 753.55 - 12; 948.250

PSG,3 (kW)
PFSG,1 0.85 - 0.85
PFSG,2 0.8722 - 0.95
PFSG,3 0.8635 - 0.893
Power 74.701 357.126 74.295

loss (kW)
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Fig. 7: Voltage profile of systems for different scenarios of Case
4 obtained by JS.

including the artificial hummingbird algorithm (AHA),
the jellyfish algorithm (JS), and Northern goshawk op-
timization (NGO). These algorithms are executed on
the IEEE 33-node for the first case to find out the best
one. In the first case, JS outperformed two others in
finding the optimal placement of SGs and reaching the
best power loss value. Then, JS is used to investigate
the TAPL value of the whole grid in the three remain-
ing cases with the number of ECSs increasing from one
to three for three scenario and the fixed number of
SGs. The results from these scenarios indicate that
the optimal placement of SGs to the grid before ECSs
results in a better power loss value, except for Sce-
nario 3, where the number of ECSs at all levels is three
for each. Besides, the more ECSs integrated into the
grid, the greater the power loss and the voltage drop.
Additionally, several limitations remain that should be
addressed to enhance the practicality and contribution
of this work:

• The analysis is limited to the standard IEEE -node
DPN configuration; a practical DPN should also
be considered.

• Other objective functions, such as minimizing
the total voltage deviation index, minimizing the
power source, minimizing the energy cost, etc.,
should be evaluated.

• The study primarily focuses on solving the given
problem from a planning perspective. The opera-
tional perspective should be explored.

• Given that solar generators (SGs) provide power
only during daylight hours, energy storage sys-
tems (ESSs) should be integrated to compensate
for nighttime shortages when SGs are inactive.

• The feasibility of SG and ESS placement sites
should be evaluated, considering the geographic
constraints of practical nodes.
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